Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.353
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35805592

RESUMO

Beach sand may act as a reservoir for numerous microorganisms, including enteric pathogens. Several of these pathogens originate in human or animal feces, which may pose a public health risk. In August 2019, high levels of fecal indicator bacteria (FIB) were detected in the sand of the Azorean beach Prainha, Terceira Island, Portugal. Remediation measures were promptly implemented, including sand removal and the spraying of chlorine to restore the sand quality. To determine the source of the fecal contamination, during the first campaign, supratidal sand samples were collected from several sites along the beach, followed by microbial source tracking (MST) analyses of Bacteroides marker genes for five animal species, including humans. Some of the sampling sites revealed the presence of marker genes from dogs, seagulls, and ruminants. Making use of the information on biological sources originating partially from dogs, the municipality enforced restrictive measures for dog-walking at the beach. Subsequent sampling campaigns detected low FIB contamination due to the mitigation and remediation measures that were undertaken. This is the first case study where the MST approach was used to determine the contamination sources in the supratidal sand of a coastal beach. Our results show that MST can be an essential tool to determine sources of fecal contamination in the sand. This study shows the importance of holistic management of beaches that should go beyond water quality monitoring for FIB, putting forth evidence for beach sand monitoring.


Assuntos
Bactérias/isolamento & purificação , Praias/normas , Areia/microbiologia , Poluição da Água , Animais , Bactérias/classificação , Bactérias/genética , Bacteroides/genética , Bacteroides/isolamento & purificação , Charadriiformes , Cães , Monitoramento Ambiental/métodos , Fezes/microbiologia , Portugal , Ruminantes , Microbiologia da Água , Poluição da Água/análise
2.
Gut Microbes ; 14(1): 2027853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35129072

RESUMO

The intestinal flora plays an important role in the development of many human and animal diseases. Microbiome association studies revealed the potential regulatory function of intestinal bacteria in many liver diseases, such as autoimmune hepatitis, viral hepatitis and alcoholic hepatitis. However, the key intestinal bacterial strains that affect pathological liver injury and the underlying functional mechanisms remain unclear. We found that the gut microbiota from gentamycin (Gen)-treated mice significantly alleviated concanavalin A (ConA)-induced liver injury compared to vancomycin (Van)-treated mice by inhibiting CD95 expression on the surface of hepatocytes and reducing CD95/CD95L-mediated hepatocyte apoptosis. Through the combination of microbiota sequencing and correlation analysis, we isolated 5 strains with the highest relative abundance, Bacteroides acidifaciens (BA), Parabacteroides distasonis (PD), Bacteroides thetaiotaomicron (BT), Bacteroides dorei (BD) and Bacteroides uniformis (BU), from the feces of Gen-treated mice. Only BA played a protective role against ConA-induced liver injury. Further studies demonstrated that BA-reconstituted mice had reduced CD95/CD95L signaling, which was required for the decrease in the L-glutathione/glutathione (GSSG/GSH) ratio observed in the liver. BA-reconstituted mice were also more resistant to alcoholic liver injury. Our work showed that a specific murine intestinal bacterial strain, BA, ameliorated liver injury by reducing hepatocyte apoptosis in a CD95-dependent manner. Determination of the function of BA may provide an opportunity for its future use as a treatment for liver disease.


Assuntos
Bacteroides/fisiologia , Microbioma Gastrointestinal , Hepatopatias/prevenção & controle , Receptor fas/metabolismo , Animais , Apoptose , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Fezes/microbiologia , Glutationa/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Hepatopatias/metabolismo , Hepatopatias/microbiologia , Hepatopatias/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor fas/genética
3.
Microbiol Spectr ; 9(3): e0125521, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937163

RESUMO

Fecal microbial community could not fully represent the intestinal microbial community. However, most studies analyzing diarrhea-dominant irritable bowel syndrome (IBS-D) were mainly based on fecal samples. We aimed to characterize the IBS-D microbial community patterns using samples at multiple intestinal sites. This study recruited 74 IBS-D patients and 20 healthy controls (HC). 22.34%, 8.51%, 14.89%, and 54.26% of them contributed to one, two, three, and four sites: duodenal mucosa (DM), duodenal lumen (DL), rectal mucosa (RM), and rectal lumen (RL) of intestinal samples, respectively. Then 16S rRNA gene analysis was performed on these 283 samples. The result showed that IBS-D microbial communities have specific patterns at each intestinal site differing from that of HC. Across hosts and sites, Bacillus, Burkholderia, and Faecalibacterium were the representative genera in duodenum of IBS-D, duodenum of HC, and rectum of HC, respectively. Samples from mucosa and lumen in rectum were highly distinguishable, regardless of IBS-D and HC. Additionally, IBS-D patients have lower microbial co-abundance network connectivity. Moreover, RM site-specific biomarker: Bacteroides used alone or together with Prevotella and Oscillospira in RM showed outstanding performance in IBS-D diagnosis. Furthermore, Bacteroides and Prevotella in RM were strongly related to the severity of abdominal pain, abdominal discomfort, and bloating in IBS-D patients. In summary, this study also confirmed fecal microbial community could not fully characterize intestinal microbial communities. Among these site-specific microbial communities, RM microbial community would be more applicable in the diagnosis of IBS-D. IMPORTANCE Microbial community varied from one site to another along the gastrointestinal tract, but current studies about intestinal microbial community in IBS-D were mainly based on fecal samples. Based on 283 intestinal samples collected from DM, DL, RM, and RL of HC and IBS-D, we found different intestinal sites had their site-specific microbial patterns in IBS-D. Notably, RM site-specific microbes Bacteroides, Prevotella, and Oscillospira could be used to discriminate IBS-D from HC accurately. Our findings could help clinicians realize the great potential of the intestinal microbial community in RM for better diagnosis of IBS-D patients.


Assuntos
Duodeno/microbiologia , Microbioma Gastrointestinal/genética , Mucosa Intestinal/microbiologia , Síndrome do Intestino Irritável/microbiologia , Reto/microbiologia , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Bacteroides/classificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Burkholderia/classificação , Burkholderia/genética , Burkholderia/isolamento & purificação , Diarreia/microbiologia , Diarreia/patologia , Disbiose/microbiologia , Faecalibacterium/classificação , Faecalibacterium/genética , Faecalibacterium/isolamento & purificação , Humanos , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/patologia , Prevotella/classificação , Prevotella/genética , Prevotella/isolamento & purificação , RNA Ribossômico 16S/genética
4.
Nat Commun ; 12(1): 5958, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645820

RESUMO

Understanding the functional potential of the gut microbiome is of primary importance for the design of innovative strategies for allergy treatment and prevention. Here we report the gut microbiome features of 90 children affected by food (FA) or respiratory (RA) allergies and 30 age-matched, healthy controls (CT). We identify specific microbial signatures in the gut microbiome of allergic children, such as higher abundance of Ruminococcus gnavus and Faecalibacterium prausnitzii, and a depletion of Bifidobacterium longum, Bacteroides dorei, B. vulgatus and fiber-degrading taxa. The metagenome of allergic children shows a pro-inflammatory potential, with an enrichment of genes involved in the production of bacterial lipo-polysaccharides and urease. We demonstrate that specific gut microbiome signatures at baseline can be predictable of immune tolerance acquisition. Finally, a strain-level selection occurring in the gut microbiome of allergic subjects is identified. R. gnavus strains enriched in FA and RA showed lower ability to degrade fiber, and genes involved in the production of a pro-inflammatory polysaccharide. We demonstrate that a gut microbiome dysbiosis occurs in allergic children, with R. gnavus emerging as a main player in pediatric allergy. These findings may open new strategies in the development of innovative preventive and therapeutic approaches. Trial: NCT04750980.


Assuntos
Alérgenos/imunologia , Hipersensibilidade Alimentar/microbiologia , Microbioma Gastrointestinal/imunologia , Tolerância Imunológica , Hipersensibilidade Respiratória/microbiologia , Alérgenos/efeitos adversos , Animais , Bacteroides/isolamento & purificação , Bacteroides/metabolismo , Bifidobacterium longum/isolamento & purificação , Bifidobacterium longum/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Clostridiales/isolamento & purificação , Clostridiales/metabolismo , Alérgenos Animais/efeitos adversos , Alérgenos Animais/imunologia , Ovos/efeitos adversos , Faecalibacterium prausnitzii/isolamento & purificação , Faecalibacterium prausnitzii/metabolismo , Feminino , Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/imunologia , Humanos , Lipopolissacarídeos/biossíntese , Masculino , Leite/efeitos adversos , Leite/imunologia , Nozes/efeitos adversos , Nozes/imunologia , Pólen/química , Pólen/imunologia , Prunus persica/química , Prunus persica/imunologia , Pyroglyphidae/química , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/imunologia , Urease/biossíntese
5.
Sci Rep ; 11(1): 17775, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493783

RESUMO

Macropod progressive periodontal disease (MPPD) is a necrotizing, polymicrobial, inflammatory disease commonly diagnosed in captive macropods. MPPD is characterized by gingivitis associated with dental plaque formation, which progresses to periodontitis and then to osteomyelitis of the mandible or maxilla. However, the underlying microbial causes of this disease remain poorly understood. In this study, we collected 27 oral plaque samples and associated clinical records from 22 captive Macropodidae and Potoroidae individuals that were undergoing clinical examination at Adelaide and Monarto Zoos in South Australia (15 healthy, 7 gingivitis and 5 periodontitis-osteomyelitis samples). The V3-V4 region of the 16S ribosomal RNA gene was sequenced using an Illumina Miseq to explore links between MPPD and oral bacteria in these animals. Compositional differences were detected between the microbiota of periodontitis-osteomyelitis cases compared to healthy samples (p-value with Bonferroni correction < 0.01), as well as gingivitis cases compared to healthy samples (p-value with Bonferroni correction < 0.05) using Permutational Multivariate Analysis of Variance (PERMANOVA). An overabundance of Porphyromonas, Fusobacterium, and Bacteroides taxa was also identified in animals with MPPD compared to healthy individuals using linear discriminant analysis effect size (LEfSe; p = < 0.05). An increased abundance of Desulfomicrobium also was detected in MPPD samples (LEfSe; p < 0.05), which could potentially reflect differences in disease progression. This is the first microbiota analysis of MPPD in captive macropods, and these results support a polymicrobial pathogenesis of MPPD, suggesting that the microbial interactions underpinning MPPD may be more complex than previously documented.


Assuntos
Bacteroides/isolamento & purificação , Placa Dentária/veterinária , Fusobacterium/isolamento & purificação , Gengivite/veterinária , Macropodidae/microbiologia , Microbiota , Periodontite/veterinária , Porphyromonas/isolamento & purificação , Potoroidae/microbiologia , Animais , Animais de Zoológico/microbiologia , Biodiversidade , Coinfecção , Placa Dentária/microbiologia , Progressão da Doença , Gengivite/microbiologia , Doenças Mandibulares/microbiologia , Doenças Mandibulares/veterinária , Doenças Maxilares/microbiologia , Doenças Maxilares/veterinária , Osteomielite/microbiologia , Osteomielite/veterinária , Periodontite/microbiologia , Austrália do Sul
6.
Anaerobe ; 72: 102447, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34560274

RESUMO

OBJECTIVES: To assess the differences in antimicrobial susceptibility of UK Bacteroides species across two distinct cohorts from 2000 to 2016. METHODS: Strain identification was performed using matrix-assisted laser-desorption ionisation time of flight mass spectrometry (MALDI-TOF MS) or by partial 16S rRNA sequencing. Minimum inhibitory concentrations (MICs) were determined using agar dilution, following CLSI guidelines (CLSI, 2012; 2017). RESULTS: 224 isolates were included from 2000 to 168 from 2016. Bacteroides fragilis was the most common species, comprising 68% of the 2000 cohort, and 77% in 2016. For all antimicrobials tested, there was an overall increase in the rates of non-susceptible isolates between the cohorts. CONCLUSIONS: The antibiogram of Bacteroides species in the UK is no longer predictable. Multi-drug resistant isolates although rare, are on the rise, and require testing to guide therapy. The monitoring and surveillance of resistance trends is imperative, as is the development of standardised, robust and accessible antimicrobial susceptibility testing methodology for clinical laboratories.


Assuntos
Infecções por Bacteroides/epidemiologia , Infecções por Bacteroides/microbiologia , Bacteroides/classificação , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Técnicas de Tipagem Bacteriana , Bacteroides/efeitos dos fármacos , Bacteroides/isolamento & purificação , Infecções por Bacteroides/tratamento farmacológico , Infecções por Bacteroides/história , Farmacorresistência Bacteriana/efeitos dos fármacos , História do Século XXI , Humanos , Estudos Longitudinais , Testes de Sensibilidade Microbiana , Vigilância em Saúde Pública , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Reino Unido/epidemiologia
7.
Pharm Biol ; 59(1): 1077-1087, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34392792

RESUMO

CONTEXT: Faecal microbiota transplantation (FMT) from Kazak individuals with normal glucose tolerance (KNGT) significantly reduces plasma glycolipid levels in type 2 diabetes mellitus db/db mice. However, the mechanism behind this effect has not been reported. OBJECTIVE: To study the mechanism of improved glycolipid disorders in db/db mice by FMT from a KNGT donor. MATERIALS AND METHODS: The normal diet group consisted of db/m mice orally administered 0.2 mL phosphate buffer saline (PBS) (db/m + PBS). For the db/db + PBS (Vehicle) and db/db + KNGT (FMT intervention group) groups, db/db mice received oral 0.2 mL PBS or faecal microorganisms from a KNGT donor, respectively. All mice were treated daily for 0, 6 or 10 weeks. Faecal DNA samples were sequenced and quantified using 16S rRNA gene sequencing and RT-qPCR, respectively. Short-chain fatty acid (SCFA) levels in the mouse faeces were determined by gas chromatography. G protein-coupled receptor 43 (GPR43) and glucagon-like peptide-1 (GLP-1) expression levels were determined. RESULTS: FMT intervention significantly increased the relative abundance of Bacteroides uniformis (0.038%, p < 0.05). Clostridium levels (LogSQ) were increased (p < 0.01), while Mucispirillum schaedleri levels (LogSQ) were decreased (p < 0.01). Acetate and butyrate levels in the faeces were significantly increased (acetate; butyrate: 22.68 ± 1.82 mmol/L; 4.13 ± 1.09 mmol/L, p < 0.05). GPR43 mRNA expression and GLP-1 protein expression increased in colon tissue (p < 0.05). DISCUSSION AND CONCLUSIONS: Mechanistically, FMT-KNGT could improve glycolipid disorders by changing the bacterial composition responsible for producing SCFAs and activating the GPR43/GLP-1 pathway.


Assuntos
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Ácidos Graxos Voláteis/metabolismo , Transplante de Microbiota Fecal/métodos , Animais , Bacteroides/isolamento & purificação , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Microbioma Gastrointestinal , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Glicolipídeos/metabolismo , Humanos , Camundongos , RNA Ribossômico 16S , Receptores Acoplados a Proteínas G/metabolismo
8.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208885

RESUMO

We previously demonstrated that flavonoid metabolites inhibit cancer cell proliferation through both CDK-dependent and -independent mechanisms. The existing evidence suggests that gut microbiota is capable of flavonoid biotransformation to generate bioactive metabolites including 2,4,6-trihydroxybenzoic acid (2,4,6-THBA), 3,4-dihydroxybenzoic acid (3,4-DHBA), 3,4,5-trihyroxybenzoic acid (3,4,5-THBA) and 3,4-dihydroxyphenylacetic acid (DOPAC). In this study, we screened 94 human gut bacterial species for their ability to biotransform flavonoid quercetin into different metabolites. We demonstrated that five of these species were able to degrade quercetin including Bacillus glycinifermentans, Flavonifractor plautii, Bacteroides eggerthii, Olsenella scatoligenes and Eubacterium eligens. Additional studies showed that B. glycinifermentans could generate 2,4,6-THBA and 3,4-DHBA from quercetin while F. plautii generates DOPAC. In addition to the differences in the metabolites produced, we also observed that the kinetics of quercetin degradation was different between B. glycinifermentans and F. plautii, suggesting that the pathways of degradation are likely different between these strains. Similar to the antiproliferative effects of 2,4,6-THBA and 3,4-DHBA demonstrated previously, DOPAC also inhibited colony formation ex vivo in the HCT-116 colon cancer cell line. Consistent with this, the bacterial culture supernatant of F. plautii also inhibited colony formation in this cell line. Thus, as F. plautii and B. glycinifermentans generate metabolites possessing antiproliferative activity, we suggest that these strains have the potential to be developed into probiotics to improve human gut health.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Antineoplásicos/farmacologia , Bactérias/classificação , Bromobenzoatos/farmacologia , Ácido Gálico/farmacologia , Hidroxibenzoatos/farmacologia , Quercetina/química , Ácido 3,4-Di-Hidroxifenilacético/química , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Antineoplásicos/química , Bacillus/genética , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias , Bacteroides/genética , Bacteroides/isolamento & purificação , Bacteroides/metabolismo , Bromobenzoatos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clostridiales/genética , Clostridiales/isolamento & purificação , Clostridiales/metabolismo , Eubacterium/genética , Eubacterium/isolamento & purificação , Eubacterium/metabolismo , Ácido Gálico/química , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Células HCT116 , Humanos , Hidroxibenzoatos/química , Filogenia , Análise de Sequência de RNA
9.
Mol Neurobiol ; 58(10): 4959-4979, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34228269

RESUMO

Food addiction (FA) is characterized by behavioral and neurochemical changes linked to loss of food intake control. Gut microbiota may influence appetite and food intake via endocrine and neural routes. The gut microbiota is known to impact homeostatic energy mechanisms, but its role in regulating the reward system is less certain. We show that the administration of Bacteroides uniformis CECT 7771 (B. uniformis) in a rat FA model impacts on the brain reward response, ameliorating binge eating and decreasing anxiety-like behavior. These effects are mediated, at least in part, by changes in the levels of dopamine, serotonin, and noradrenaline in the nucleus accumbens and in the expression of dopamine D1 and D2 receptors in the prefrontal cortex and intestine. B. uniformis reverses the fasting-induced microbiota changes and increases the abundance of species linked to healthy metabolotypes. Our data indicate that microbiota-based interventions might help to control compulsive overeating by modulating the reward response.


Assuntos
Ansiedade/metabolismo , Bacteroides/metabolismo , Transtorno da Compulsão Alimentar/metabolismo , Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiologia , Recompensa , Animais , Ansiedade/terapia , Bacteroides/isolamento & purificação , Transtorno da Compulsão Alimentar/terapia , Humanos , Recém-Nascido , Masculino , Microdiálise/métodos , Ratos , Ratos Endogâmicos WKY
10.
Sci Rep ; 11(1): 13743, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215773

RESUMO

This longitudinal study was designed to elucidate whether gut microbiota is associated with relapse and treatment response in ulcerative colitis (UC) patients. Fifty-one patients with UC were enrolled between 2012 and 2017, and followed up through 2020. Colon mucosal biopsy were obtained at enrollment, and 16S ribosomal RNA sequencing was performed using extracted RNA. Of the 51 patients, 24 were in remission and 27 had active UC at enrollment. Of the 24 patients in remission, 17 maintained remission and 7 developed relapse during follow-up. The 7 patients with relapse showed lower diversity, with a lower proportion of Clostridiales (p = 0.0043), and a higher proportion of Bacteroides (p = 0.047) at enrollment than those without relapse. The 27 patients with active UC were classified into response (n = 6), refractory (n = 13), and non-response (n = 8) groups according to their treatment response in 6 months. The refractory and non-response groups showed lower diversity with a lower proportion of Prevotella (p = 0.048 and 0.043) at enrollment than the response group. This study is the first demonstration that reduced diversity and particular microbes are associated with the later clinical course of relapse events and treatment response in UC.


Assuntos
Colite Ulcerativa/microbiologia , Colo/microbiologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Adulto , Bacteroides/genética , Bacteroides/isolamento & purificação , Clostridiales/genética , Clostridiales/isolamento & purificação , Colite Ulcerativa/patologia , Colite Ulcerativa/terapia , Fezes/microbiologia , Feminino , Humanos , Mucosa Intestinal/microbiologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prevotella/genética , Prevotella/isolamento & purificação , Recidiva
11.
BMC Infect Dis ; 21(1): 625, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193073

RESUMO

BACKGROUND: Bacteroides dorei is an anaerobic gram-negative bacterium first described in 2006. Because of the high similarity in mass spectra between B. dorei and Bacteroides vulgatus, discriminating between these species is arduous in clinical practice. In recent decades, 16S rRNA gene sequencing has been a complementary method for distinguishing taxonomically close bacteria, including B. dorei and B. vulgatus, at the genus and species levels. Consequently, B. dorei has been shown to contribute to some diseases, including type 1 autoimmune diabetes mellitus and atherosclerotic diseases. However, there are no reports on invasive infectious diseases caused by B. dorei. This report describes the first case of direct invasion and colonisation of human tissue by B. dorei, thus providing a warning regarding the previously proposed application of B. dorei as a live biotherapeutic for atherosclerotic diseases. CASE PRESENTATION: A 78-year-old Japanese man complained of intermittent chest/back pain and was diagnosed with a mycotic thoracic aortic aneurysm by enhanced computed tomography on admission. Despite strict blood pressure control and empirical antibiotic therapy, the patient's condition worsened. To prevent aneurysmal rupture and eliminate infectious foci, the patient underwent surgical treatment. The resected specimen was subjected to tissue culture and 16S rRNA gene sequencing analysis to identify pathogenic bacteria. A few days after the surgery, culture and sequencing results revealed that the pathogen was B. dorei/B. vulgatus and B. dorei, respectively. The patient was successfully treated with appropriate antibacterial therapy and after improvement, was transferred to another hospital for rehabilitation on postoperative day 34. There was no recurrence of infection or aneurysm after the patient transfer. CONCLUSIONS: This report describes the first case of invasive infectious disease caused by B. dorei, casting a shadow over its utilisation as a probiotic for atherosclerotic diseases.


Assuntos
Aneurisma Infectado/microbiologia , Aneurisma Aórtico/microbiologia , Infecções por Bacteroides/diagnóstico , Bacteroides/isolamento & purificação , Idoso , Aneurisma Infectado/cirurgia , Aneurisma Aórtico/cirurgia , Humanos , Japão/epidemiologia , Masculino , RNA Ribossômico 16S , Análise de Sequência de RNA
12.
Genome Biol ; 22(1): 187, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162397

RESUMO

BACKGROUND: The human microbiome plays an important role in cancer. Accumulating evidence indicates that commensal microbiome-derived DNA may be represented in minute quantities in the cell-free DNA of human blood and could possibly be harnessed as a new cancer biomarker. However, there has been limited use of rigorous experimental controls to account for contamination, which invariably affects low-biomass microbiome studies. RESULTS: We apply a combination of 16S-rRNA-gene sequencing and droplet digital PCR to determine if the specific detection of cell-free microbial DNA (cfmDNA) is possible in metastatic melanoma patients. Compared to matched stool and saliva samples, the absolute concentration of cfmDNA is low but significantly above the levels detected from negative controls. The microbial community of plasma is strongly influenced by laboratory and reagent contaminants introduced during the DNA extraction and sequencing processes. Through the application of an in silico decontamination strategy including the filtering of amplicon sequence variants (ASVs) with batch dependent abundances and those with a higher prevalence in negative controls, we identify known gut commensal bacteria, such as Faecalibacterium, Bacteroides and Ruminococcus, and also other uncharacterised ASVs. We analyse additional plasma samples, highlighting the potential of this framework to identify differences in cfmDNA between healthy and cancer patients. CONCLUSIONS: Together, these observations indicate that plasma can harbour a low yet detectable level of cfmDNA. The results highlight the importance of accounting for contamination and provide an analytical decontamination framework to allow the accurate detection of cfmDNA for future biomarker studies in cancer and other diseases.


Assuntos
Ácidos Nucleicos Livres/genética , DNA Bacteriano/genética , Melanoma/microbiologia , Microbiota/genética , Neoplasias Cutâneas/microbiologia , Bacteroides/classificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Ácidos Nucleicos Livres/sangue , Contaminação por DNA , DNA Bacteriano/sangue , Faecalibacterium/classificação , Faecalibacterium/genética , Faecalibacterium/isolamento & purificação , Fezes/microbiologia , Humanos , Melanoma/diagnóstico , Melanoma/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Ruminococcus/classificação , Ruminococcus/genética , Ruminococcus/isolamento & purificação , Saliva/microbiologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Simbiose/fisiologia
13.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34148877

RESUMO

Diagnosis and treatment of various diseases in Ayurveda, the Indian system of medicine, relies on 'prakriti' phenotyping of individuals into predominantly three constitutions, kapha, pitta and vata. Recent studies propose that microbiome play an integral role in precision medicine. A study of the relationship between prakriti - the basis of personalized medicine in Ayurveda and that of gut microbiome, and possible biomarker of an individual's health, would vastly improve precision therapy. Towards this, we analyzed bacterial metagenomes from buccal (oral microbiome) and fecal (gut microbiome) samples of 272 healthy individuals of various predominant prakritis. Major bacterial genera from gut microbiome included Prevotella, Bacteroides and Dialister while oral microbiome included Streptococcus, Neisseria, Veilonella, Haemophilus, Porphyromonas and Prevotella. Though the core microbiome was shared across all individuals, we found prakriti specific signatures such as preferential presence of Paraprevotella and Christensenellaceae in vata individuals. A comparison of core gut microbiome of each prakriti with a database of 'healthy' microbes identified microbes unique to each prakriti with functional roles similar to the physiological characteristics of various prakritis as described in Ayurveda. Our findings provide evidence to Ayurvedic interventions based on prakriti phenotyping and possible microbial biomarkers that can stratify the heterogenous population and aid in precision therapy.


Assuntos
Ayurveda/métodos , Metagenoma , Medicina de Precisão/métodos , Simbiose/fisiologia , Adulto , Técnicas de Tipagem Bacteriana , Bacteroides/classificação , Bacteroides/genética , Bacteroides/isolamento & purificação , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Haemophilus/classificação , Haemophilus/genética , Haemophilus/isolamento & purificação , Voluntários Saudáveis , Humanos , Masculino , Boca/microbiologia , Neisseria/classificação , Neisseria/genética , Neisseria/isolamento & purificação , Filogenia , Porphyromonas/classificação , Porphyromonas/genética , Porphyromonas/isolamento & purificação , Prevotella/classificação , Prevotella/genética , Prevotella/isolamento & purificação , Streptococcus/classificação , Streptococcus/genética , Streptococcus/isolamento & purificação , Veillonella/classificação , Veillonella/genética , Veillonella/isolamento & purificação , Veillonellaceae/classificação , Veillonellaceae/genética , Veillonellaceae/isolamento & purificação
14.
Nat Commun ; 12(1): 3294, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078892

RESUMO

Experimental manipulation of gut microbes in animal models alters fear behavior and relevant neurocircuitry. In humans, the first year of life is a key period for brain development, the emergence of fearfulness, and the establishment of the gut microbiome. Variation in the infant gut microbiome has previously been linked to cognitive development, but its relationship with fear behavior and neurocircuitry is unknown. In this pilot study of 34 infants, we find that 1-year gut microbiome composition (Weighted Unifrac; lower abundance of Bacteroides, increased abundance of Veillonella, Dialister, and Clostridiales) is significantly associated with increased fear behavior during a non-social fear paradigm. Infants with increased richness and reduced evenness of the 1-month microbiome also display increased non-social fear. This study indicates associations of the human infant gut microbiome with fear behavior and possible relationships with fear-related brain structures on the basis of a small cohort. As such, it represents an important step in understanding the role of the gut microbiome in the development of human fear behaviors, but requires further validation with a larger number of participants.


Assuntos
Bacteroides/genética , Clostridiales/genética , Medo/psicologia , Microbioma Gastrointestinal/genética , Veillonella/genética , Veillonellaceae/genética , Adulto , Bacteroides/classificação , Bacteroides/isolamento & purificação , Encéfalo/fisiologia , Aleitamento Materno , Clostridiales/classificação , Clostridiales/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Lactente , Fórmulas Infantis , Estudos Longitudinais , Masculino , Projetos Piloto , RNA Ribossômico 16S/genética , Veillonella/classificação , Veillonella/isolamento & purificação , Veillonellaceae/classificação , Veillonellaceae/isolamento & purificação
15.
Nature ; 595(7865): 91-95, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163075

RESUMO

Changing food preferences brought about by westernization that have deleterious health effects1,2-combined with myriad forces that are contributing to increased food insecurity-are catalysing efforts to identify more nutritious and affordable foods3. Consumption of dietary fibre can help to prevent cardiovascular disease, type 2 diabetes and obesity4-6. A substantial number of reports have explored the effects of dietary fibre on the gut microbial community7-9. However, the microbiome is complex, dynamic and exhibits considerable intra- and interpersonal variation in its composition and functions. The large number of potential interactions between the components of the microbiome makes it challenging to define the mechanisms by which food ingredients affect community properties. Here we address the question of how foods containing different fibre preparations can be designed to alter functions associated with specific components of the microbiome. Because a marked increase in snack consumption is associated with westernization, we formulated snack prototypes using plant fibres from different sustainable sources that targeted distinct features of the gut microbiomes of individuals with obesity when transplanted into gnotobiotic mice. We used these snacks to supplement controlled diets that were consumed by adult individuals with obesity or who were overweight. Fibre-specific changes in their microbiomes were linked to changes in their plasma proteomes indicative of an altered physiological state.


Assuntos
Fibras na Dieta/farmacologia , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Lanches , Adolescente , Adulto , Animais , Bacteroides/efeitos dos fármacos , Bacteroides/isolamento & purificação , Proteínas Sanguíneas/análise , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/microbiologia , Sobrepeso/microbiologia , Proteoma/análise , Proteoma/efeitos dos fármacos , Adulto Jovem
16.
Gut Microbes ; 13(1): 1-17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34132157

RESUMO

Dysbiosis of gut microbiota has been retrospectively linked to autism spectrum disorders but the temporal association between gut microbiota and early neurodevelopment in healthy infants is largely unknown. We undertook this study to determine associations between gut microbiota at two critical periods during infancy and neurodevelopment in a general population birth cohort.Here, we analyzed data from 405 infants (199 females) from the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study. Neurodevelopmental outcomes were objectively assessed using the Bayley Scale of Infant Development (BSID-III) at 1 and 2 years of age. Microbiota profiling with 16S rRNA gene sequencing was conducted on fecal samples obtained at a mean age of 4 and 12 months.Using clustering methods, we identified three groups of infants based on relative abundance of gut microbiota at 12 months: Proteobacteria-dominant cluster (22.4% higher abundance at 12 months), Firmicutes-dominant cluster (46.0% higher abundance at 12 months) and Bacteroidetes-dominant cluster (31.6% higher abundance at 12 months). Relative to the Proteobacteria-dominant cluster, the Bacteroidetes-dominant cluster was associated with higher scores for cognitive (4.8 points; FDRp = .02), language (4.2 points; FDRp≤0.001), and motor (3.1 points; FDRp = .03) development at age 2 in models adjusted for covariates. When stratified by sex, only male infants with a Bacteroidetes-dominant microbiota had more favorable cognitive (5.9 points, FDRp = .06) and language (7.9 points; FDRp≤0.001) development. Genus Bacteroides abundance in gut microbiota was positively correlated with cognitive and language scores at age 2. Fully adjusted linear mixed model analysis revealed a positive association between Bacteroidetes-dominant cluster and change in cognitive and language performance from 1 to 2 years, predominantly among males. No associations were evident between 4-month microbiota clusters and BSID-II scores. Noteworthy is that enhanced sphingolipid synthesis and metabolism, and antagonism or competition between Bacteroides and Streptococcus were characteristic of a Bacteroidetes-dominant gut microbiota.This study found strong evidence of positive associations between Bacteroidetes gut microbiota in late infancy and subsequent neurodevelopment, most prominently among males but not females.


Assuntos
Bacteroides/crescimento & desenvolvimento , Desenvolvimento Infantil , Microbioma Gastrointestinal , Sistema Nervoso/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bacteroides/classificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Canadá , Feminino , Seguimentos , Humanos , Lactente , Masculino , RNA Ribossômico 16S/genética , Estudos Retrospectivos
17.
PLoS One ; 16(4): e0249944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33836012

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that reduces lung and respiratory function, with a high mortality rate. Severe and acute deterioration of COPD can easily lead to respiratory failure, resulting in personal, social, and medical burden. Recent studies have shown a high correlation between the gut microbiota and lung inflammation. In this study, we investigated the relationship between gut microbiota and COPD severity. A total of 60 COPD patients with varying severity according to GOLD guidelines were enrolled in this study. DNA was extracted from patients' stool and 16S rRNA data analysis conducted using high-throughput sequencing followed by bioinformatics analysis. The richness of the gut microbiota was not associated with COPD severity. The gut microbiome is more similar in stage 1 and 2 COPD than stage 3+4 COPD. Fusobacterium and Aerococcus were more abundant in stage 3+4 COPD. Ruminococcaceae NK4A214 group and Lachnoclostridium were less abundant in stage 2-4, and Tyzzerella 4 and Dialister were less abundant in stage 1. However, the abundance of a Bacteroides was associated with blood eosinophils and lung function. This study suggests that no distinctive gut microbiota pattern is associated with the severity of COPD. The gut microbiome could affect COPD by gut inflammation shaping the host immune system.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Idoso de 80 Anos ou mais , Bactérias/genética , Bacteroides/genética , Bacteroides/isolamento & purificação , Clostridiales/genética , Clostridiales/isolamento & purificação , Fezes/microbiologia , Fusobacterium/genética , Fusobacterium/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Índice de Gravidade de Doença
18.
Artigo em Inglês | MEDLINE | ID: mdl-33881983

RESUMO

Four unknown strains, characterized as Gram-stain-negative, strictly anaerobic, non-motile and rod-shaped, were isolated from fresh faeces of healthy humans in PR China. Pairwise sequence comparisons of the 16S rRNA genes showed that these isolates were separated into two clusters. Cluster I (strains HF-5141T and HF-106) was most closely related to Bacteroides xylanisolvens XB1AT (98.0-98.3 % similarity) and Bacteroides ovatus ATCC 8483T (97.3-97.5 %), whereas cluster II (strains HF-5287T and HF-5300) exhibited a similarity range of 96.8-97.0 % to Bacteroides finegoldii JCM 13345T, 96.7-96.9 % to Bacteroides faecis MAJ27T and 96.4-96.5 % to Bacteroides xylanisolvens XB1AT. The DNA G+C contents of type strains HF-5141T and HF-5287T were 41.5 and 42.6 mol%, respectively. These strains had anteiso-C15 : 0 as the major cellular fatty acid, MK-9 and MK-11 as the predominant respiratory quinones, and phosphatidylethanolamine, aminophospholipids and phospholipids as major polar lipids, which is typical for members of the genus Bacteroides. However, the average nucleotide identity and digital DNA-DNA hybridization values, accompanied by different phenotypic and biochemical characteristics, distinguished them from their corresponding closest relatives as well as from other recognized members of the genus Bacteroides. Therefore, strains HF-5141T and HF-5287T represent two novel species in the genus Bacteroides, for which the names Bacteroides luhongzhouii sp. nov. and Bacteroides zhangwenhongii sp. nov. are proposed, with HF-5141T (=CGMCC 1.16787T=GDMCC 1.1591T=JCM 33480T) and HF-5287T (=CGMCC 1.16724T=GDMCC 1.1590T=JCM 33481T) as type strains.


Assuntos
Bacteroides/classificação , Fezes/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Bacteroides/isolamento & purificação , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Humanos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
19.
Sci Rep ; 11(1): 6231, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737648

RESUMO

The intestinal microbiome changes dynamically in early infancy. Colonisation by Bifidobacterium and Bacteroides and development of intestinal immunity is interconnected. We performed a prospective observational cohort study to determine the influence of antibiotics taken by the mother immediately before delivery on the intestinal microbiome of 130 healthy Japanese infants. Faecal samples (383) were collected at 1, 3, and 6 months and analysed using next-generation sequencing. Cefazolin was administered before caesarean sections, whereas ampicillin was administered in cases with premature rupture of the membranes and in Group B Streptococcus-positive cases. Bifidobacterium and Bacteroides were dominant (60-70% mean combined occupancy) at all ages. A low abundance of Bifidobacterium was observed in infants exposed to antibiotics at delivery and at 1 and 3 months, with no difference between delivery methods. A lower abundance of Bacteroides was observed after caesarean section than vaginal delivery, irrespective of antibiotic exposure. Additionally, occupancy by Bifidobacterium at 1 and 3 months and by Bacteroides at 3 months differed between infants with and without siblings. All these differences disappeared at 6 months. Infants exposed to intrapartum antibiotics displayed altered Bifidobacterium abundance, whereas abundance of Bacteroides was largely associated with the delivery method. Existence of siblings also significantly influenced the microbiota composition of infants.


Assuntos
Bacteroides/genética , Bifidobacterium/genética , Cesárea , Microbioma Gastrointestinal/genética , Complicações Infecciosas na Gravidez/microbiologia , Infecções Estreptocócicas/microbiologia , Ampicilina/uso terapêutico , Antibacterianos/uso terapêutico , Bacteroides/isolamento & purificação , Bifidobacterium/isolamento & purificação , Cefazolina/uso terapêutico , Parto Obstétrico/métodos , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Intestinos/microbiologia , Japão , Gravidez , Complicações Infecciosas na Gravidez/tratamento farmacológico , Estudos Prospectivos , Irmãos , Infecções Estreptocócicas/tratamento farmacológico
20.
Sci Rep ; 11(1): 815, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436756

RESUMO

CrAssphages are a diverse group of related phages detected in human feces where they are the most prevalent and abundant prokaryotic virus. CrAssphages' cellular host has been identified as the anaerobic Bacteroides intestinalis. CrAssphage has also been reported in non-human primates and environmental samples and has been proposed as a marker of human fecal contamination. Here we describe crAssphage DNA in a feline fecal sample. 95% of the ~ 100 Kb genome could be assembled and classified in genus 1 of the recently proposed Alphacrassvirinae subfamily. The cat origin of the fecal sample was confirmed by partial mitochondrial DNA sequencing. High levels of Bacteroides intestinalis DNA could also be detected in this cat's feces. Fecal samples longitudinally collected over a 4-week period showed the continuous shedding of crAssphage DNA. We therefore report the first genome sequence-confirmed detection of crAssphage in fecal samples of a non-primate mammal.


Assuntos
Bacteriófagos/genética , Bacteroides/isolamento & purificação , Gatos/microbiologia , Monitoramento Ambiental/métodos , Fezes/microbiologia , Fezes/virologia , Animais , Bacteriófagos/isolamento & purificação , Bacteroides/genética , Gatos/virologia , Humanos , Filogenia , Análise de Sequência de DNA/métodos , Esgotos/microbiologia , Esgotos/virologia , Poluição da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...